不定积分笔记2025年7月28日 · 阅读需 9 分钟Versed_sineWebsite Developer+C\Huge{+C}+C,+C\Huge{+C}+C,还是 +C\Huge{+C}+C 不定积分难学?1h全面入门到精通!|学渣救星 积分表 积分表∫k dx=kx+C∫xa dx=xa+1a+1+C(a≠−1)∫1x dx=ln∣x∣+C∫11+x2 dx=arctanx+C∫11−x2 dx=arcsinx+C∫ax dx=1lnaax+C(a>0,a≠1)∫cosx dx=sinx+C∫sinx dx=−cosx+C∫sec2x dx=tanx+C∫csc2x dx=−cotx+C∫secxtanx dx=secx+C∫cscxcotx dx=−cscx+C∫secx dx=ln∣secx+tanx∣+C∫cscx dx=ln∣cscx−cotx∣+C∫tanx dx=−ln∣cosx∣+C∫cotx dx=ln∣sinx∣+C∫dxx2+a2=1aarctanxa+C(a>0)∫dxx2±a2=ln∣x+x2±a2∣+C(a>0)∫dxa2−x2=arcsinxa+C(a>0)∫1a2−x2 dx=12aln∣a+xa−x∣+C(a>0)\begin{align} \int k\,\mathrm{d}x=kx+C\\ \int x^a\,\mathrm{d}x=\dfrac{x^{a+1}}{a+1}+C(a\ne-1)\\ \int \dfrac{1}{x}\,\mathrm{d}x=\ln |x|+C\\ \int \dfrac{1}{1+x^2}\,\mathrm{d}x=\arctan x+C\\ \int \dfrac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\arcsin x+C\\ \int a^x\,\mathrm{d}x=\dfrac{1}{\ln a}a^x+C(a>0, a\ne 1)\\ \int \cos x\,\mathrm{d}x=\sin x+C\\ \int \sin x\,\mathrm{d}x=-\cos x+C\\ \int \sec^2 x\,\mathrm{d}x=\tan x+C\\ \int \csc^2 x\,\mathrm{d}x=-\cot x+C\\ \int \sec x\tan x\,\mathrm{d}x=\sec x+C\\ \int \csc x\cot x\,\mathrm{d}x=-\csc x+C\\ \int \sec x\,\mathrm{d}x=\ln|\sec x+\tan x|+C\\ \int \csc x\,\mathrm{d}x=\ln|\csc x-\cot x|+C\\ \int \tan x\,\mathrm{d}x=-\ln|\cos x|+C\\ \int \cot x\,\mathrm{d}x=\ln|\sin x|+C\\ \int \dfrac{\mathrm{d}x}{x^2+a^2}=\dfrac{1}{a}\arctan\dfrac{x}{a}+C(a>0)\\ \int \dfrac{\mathrm{d}x}{\sqrt{x^2\pm a^2}}=\ln|x+\sqrt{x^2\pm a^2}|+C(a>0)\\ \int \dfrac{\mathrm{d}x}{\sqrt{a^2-x^2}}=\arcsin\dfrac{x}{a}+C(a>0)\\ \int \dfrac{1}{a^2-x^2}\,\mathrm{d}x=\dfrac{1}{2a}\ln|\dfrac{a+x}{a-x}|+C(a>0) \end{align}∫kdx=kx+C∫xadx=a+1xa+1+C(a=−1)∫x1dx=ln∣x∣+C∫1+x21dx=arctanx+C∫1−x21dx=arcsinx+C∫axdx=lna1ax+C(a>0,a=1)∫cosxdx=sinx+C∫sinxdx=−cosx+C∫sec2xdx=tanx+C∫csc2xdx=−cotx+C∫secxtanxdx=secx+C∫cscxcotxdx=−cscx+C∫secxdx=ln∣secx+tanx∣+C∫cscxdx=ln∣cscx−cotx∣+C∫tanxdx=−ln∣cosx∣+C∫cotxdx=ln∣sinx∣+C∫x2+a2dx=a1arctanax+C(a>0)∫x2±a2dx=ln∣x+x2±a2∣+C(a>0)∫a2−x2dx=arcsinax+C(a>0)∫a2−x21dx=2a1ln∣a−xa+x∣+C(a>0) 例题 ∫1x4(x2+1) dx\displaystyle\int \dfrac{1}{x^4(x^2+1)}\,\mathrm{d}x∫x4(x2+1)1dx“分项”:抄分母,加一个减一个I=∫(1+x2)−x2x4(x2+1) dx=∫1x4 dx−∫1x2(x2+1) dx=∫1x4 dx−∫(1+x2)−x2x2(x2+1) dx=∫1x4 dx−∫1x2 dx+∫1x2+1 dx=−13x−3+1x+arctanx+C\begin{aligned} I=&\int \dfrac{(1+x^2)-x^2}{x^4(x^2+1)}\,\mathrm{d}x\\ =&\int \dfrac{1}{x^4}\,\mathrm{d}x-\int \dfrac{1}{x^2(x^2+1)}\,\mathrm{d}x\\ =&\int \dfrac{1}{x^4}\,\mathrm{d}x-\int \dfrac{(1+x^2)-x^2}{x^2(x^2+1)}\,\mathrm{d}x\\ =&\int \dfrac{1}{x^4}\,\mathrm{d}x-\int \dfrac{1}{x^2}\,\mathrm{d}x+\int \dfrac{1}{x^2+1}\,\mathrm{d}x\\ =&-\dfrac{1}{3}x^{-3}+\dfrac{1}{x}+\arctan x+C \end{aligned}I=====∫x4(x2+1)(1+x2)−x2dx∫x41dx−∫x2(x2+1)1dx∫x41dx−∫x2(x2+1)(1+x2)−x2dx∫x41dx−∫x21dx+∫x2+11dx−31x−3+x1+arctanx+C ∫tan2 dx\displaystyle\int \tan^2\,\mathrm{d}x∫tan2dxsin2x+cos2x=1⇒tan2+1=sec2\sin^2 x+\cos^2 x=1\Rightarrow\tan^2+1=\sec^2sin2x+cos2x=1⇒tan2+1=sec2I=∫(sec2x−1) dx=tanx−x+CI=\displaystyle\int (\sec^2 x-1)\,\mathrm{d}x=\tan x-x+CI=∫(sec2x−1)dx=tanx−x+C ∫cos2x2 dx\displaystyle\int \cos^2\dfrac{x}{2}\,\mathrm{d}x∫cos22xdxI=∫1+cosx2 dx=∫12 dx+12∫cosx dx=12x+12sinx+C\begin{aligned} I=&\int \dfrac{1+\cos x}{2}\,\mathrm{d}x\\ =&\int \dfrac{1}{2}\,\mathrm{d}x+\dfrac{1}{2}\int \cos x\,\mathrm{d}x\\ =&\dfrac{1}{2}x+\dfrac{1}{2}\sin x+C \end{aligned}I===∫21+cosxdx∫21dx+21∫cosxdx21x+21sinx+C 第一类换元积分法 定义 第一类换元积分法定义设 ∫f(u) du=F(u)+C\displaystyle \int f(u)\,\mathrm{d}u=F(u)+C∫f(u)du=F(u)+C,且 u=φ(x)u=\varphi(x)u=φ(x) 可导,则由复合函数微分法和不定积分定义由有∫f[φ(x)]φ′(x) dx=∫f[φ(x)] dφ(x)=令 u=φ(x)∫f(u) du=F(u)+C=F[φ(x)]+C\int f[\varphi(x)]\varphi'(x)\,\mathrm{d}x=\int f[\varphi(x)]\,\mathrm{d}\varphi(x)\xlongequal{令\ u=\varphi(x)}\int f(u)\,\mathrm{d}u=F(u)+C=F[\varphi(x)]+C∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)令 u=φ(x)∫f(u)du=F(u)+C=F[φ(x)]+C 例题 ∫ln2xx dx\displaystyle \int \frac{\ln^2 x}{x}\,\mathrm{d}x∫xln2xdxI=∫ln2x⋅1x dx=∫ln2x dlnx=13ln3x+CI=\int \ln^2 x\cdot\dfrac{1}{x}\,\mathrm{d}x=\int \ln^2 x\,\mathrm{d}\ln x=\dfrac{1}{3}\ln^3 x+CI=∫ln2x⋅x1dx=∫ln2xdlnx=31ln3x+C ∫tanx dx\displaystyle \int \tan x\,\mathrm{d}x∫tanxdxI=∫sinxcosx dx=−∫1cosx dcosx=−ln∣cosx∣+CI=\int \dfrac{\sin x}{\cos x}\,\mathrm{d}x=-\int \dfrac{1}{\cos x}\,\mathrm{d}\cos x=-\ln|\cos x|+CI=∫cosxsinxdx=−∫cosx1dcosx=−ln∣cosx∣+C ∫1a2−x2 dx(a>0)\displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x(a>0)∫a2−x21dx(a>0)积分表 #5∫11−x2 dx=arcsinx+C\int \dfrac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\arcsin x+C∫1−x21dx=arcsinx+CI=∫1a2[1−(xa)2] dx=∫11−(xa)2 d(xa)=arcsinxa+CI=\int \dfrac{1}{\sqrt{a^2\left[1-\left(\frac{x}{a}\right)^2\right]}}\,\mathrm{d}x=\int \dfrac{1}{\sqrt{1-\left(\frac{x}{a}\right)^2}}\,\mathrm{d}\left(\dfrac{x}{a}\right)=\arcsin \dfrac{x}{a}+CI=∫a2[1−(ax)2]1dx=∫1−(ax)21d(ax)=arcsinax+C ∫dxx(1+x)\displaystyle \int \dfrac{\mathrm{d}x}{\sqrt{x}(1+x)}∫x(1+x)dx提示dx=(x)′dx=12xdx⇒1xdx=2dx\mathrm{d}\sqrt{x}=\left(\sqrt{x}\right)'\mathrm{d}x=\dfrac{1}{2\sqrt{x}}\mathrm{d}x\Rightarrow\dfrac{1}{\sqrt{x}}\mathrm{d}x=2\mathrm{d}\sqrt{x}dx=(x)′dx=2x1dx⇒x1dx=2dx积分表 #4∫11+x2 dx=arctanx+C\int \dfrac{1}{1+x^2}\,\mathrm{d}x=\arctan x+C∫1+x21dx=arctanx+CI=2∫11+(x)2 dx=2arctanx+CI=2 \int \dfrac{1}{1+\left(\sqrt{x}\right)^2}\,\mathrm{d}\sqrt{x}=2\arctan\sqrt{x}+CI=2∫1+(x)21dx=2arctanx+C 第二类换元积分 定义 第二类换元积分定义适当地选择变量代换 x=ψ(t)x=\psi(t)x=ψ(t),将积分 ∫f(x) dx\displaystyle \int f(x)\,\mathrm{d}x∫f(x)dx 化为积分 ∫f[ψ(t)]ψ′(t) dt\displaystyle \int f[\psi(t)]\psi'(t)\,\mathrm{d}t∫f[ψ(t)]ψ′(t)dt,换元公式可表达为 ∫f(x) dx=∫f[ψ(t)]ψ′(t) dt\displaystyle \int f(x)\,\mathrm{d}x=\displaystyle \int f[\psi(t)]\psi'(t)\,\mathrm{d}t∫f(x)dx=∫f[ψ(t)]ψ′(t)dt,其中,x=ψ(t)x=\psi(t)x=ψ(t) 是单调可导的函数且 ψ′(t)≠0\psi'(t)\ne 0ψ′(t)=0,确保存在反函数 t=ψ−1(x)t=\psi^{-1}(x)t=ψ−1(x)。 常见的几种换元法 三角代换被积函数含 a2−x2(a>0)\sqrt{a^2-x^2}(a>0)a2−x2(a>0),令 x=asint,t∈[−π2,π2]x=a\sin t, t\in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]x=asint,t∈[−2π,2π],则 a2−x2=acost\sqrt{a^2-x^2}=a\cos ta2−x2=acost;被积函数含 x2+a2(a>0)\sqrt{x^2+a^2}(a>0)x2+a2(a>0),令 x=atant,t∈(−π2,π2)x=a\tan t, t\in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)x=atant,t∈(−2π,2π),则 x2+a2=asect\sqrt{x^2+a^2}=a\sec tx2+a2=asect;被积函数含 x2−a2(a>0)\sqrt{x^2-a^2}(a>0)x2−a2(a>0),令 x=asect,t∈[0,π2)∪(π2,π]x=a\sec t, t\in\left[0, \dfrac{\pi}{2}\right)\cup\left(\dfrac{\pi}{2}, \pi\right]x=asect,t∈[0,2π)∪(2π,π],则 x2−a2=a∣tant∣\sqrt{x^2-a^2}=a|\tan t|x2−a2=a∣tant∣; 例题 ∫dx1+x\displaystyle \int \dfrac{\mathrm{d}x}{1+\sqrt{x}}∫1+xdxI=即 x=t2令 t=x>0∫dt21+t=∫2tdt1+t=2∫t1+t dt=2∫(t+1)−11+t dt=2[∫1 dt−∫11+t dt]=2[∫1 dt−∫11+t d(t+1)]=2[t−ln(t+1)]+C=2x−2ln(x+1)+C\begin{aligned} I\xlongequal[即\ x=t^2]{令\ t=\sqrt{x}>0}&\int \dfrac{\mathrm{d}t^2}{1+t}=\int \dfrac{2t\mathrm{d}t}{1+t}\\ =&2 \int \dfrac{t}{1+t}\,\mathrm{d}t=2 \int \dfrac{(t+1)-1}{1+t}\,\mathrm{d}t\\ =&2\left[\int 1\,\mathrm{d}t-\int \dfrac{1}{1+t}\,\mathrm{d}t\right]\\ =&2\left[\int 1\,\mathrm{d}t-\int \dfrac{1}{1+t}\,\mathrm{d}(t+1)\right]\\ =&2[t-\ln(t+1)]+C\\ =&2\sqrt{x}-2\ln(\sqrt{x}+1)+C \end{aligned}I令 t=x>0即 x=t2=====∫1+tdt2=∫1+t2tdt2∫1+ttdt=2∫1+t(t+1)−1dt2[∫1dt−∫1+t1dt]2[∫1dt−∫1+t1d(t+1)]2[t−ln(t+1)]+C2x